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We present a 2%dimensional (r, z, D,, uO, v,; 13/&3= 0) quasineutral hybrid code suitable for 
studying a broad class of plasma and beam-plasma configurations. Ions are represented by 
particles and electrons by an inertialess thermal fluid which obeys a generalized Ohm’s law. 
Fields are solved in the quasineutral Darwin approximation. Several collisional and atomic 
processes are also included in the model. The code has been applied to the problem of 
propagation of intense ion beams through preformed z-pinch plasma channels, a scenario of 
interest for inertial confinement fusion devices. c 1987 Academc Press, inc. 

1. INTRODUCTION 

The past several years have seen quasineutral hybrid (particle-fluid) simulation 
techniques emerge as powerful tools for the study of complex plasma ~be~orne~a 
occurring over temporal scales which are long compared to the electron 
period (0~~‘) and gyroperiod (52;‘) and spatial scales which are long camp 
the electron Larmor radius (r,J. In particular, hybrid models are well suited to 

roblems dominated by the time scales of ion physics, in which case the detailed 
ynamics of the electron motion are unimportant. Electrons may then be described 
y an appropriately chosen set of fluid equations, while ions are represented by par- 

ticles to retain kinetic effects. In addition, if the phenomena of interest are 
kiently low frequency so that 47rjJI 9 laE/dtj, the effects of electrom 
radiation may be neglected in the field equations. 

Some of the earliest quasineutral hybrid simulations were performed by Sgro and 
Nielson [ 11 in their study of theta-pinch implosions. These simulations were one- 
dimensional, and attempted to predict experimental pinch results via the inclusion 
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of anomalous transport coefhcients in the equations of motion. The density and 
magnetic field profiles generated by the simulations were found to be comparable to 
the profiles obtained from the ZT-1 experiment at Los Alamos. 

Fundamental numerical stability analyses of quasineutral hybrid models and 
their extension to multidimensional problems were performed by Byem et ~1. [2]. 

Both linearized and fully nonlinear models were considered, These simulations were 
successfully applied to the study of various plasma microinstabilities and to the 
problem of beam-driven plasma return currents across a magnetic field. The 
algorithm of Byers et al. has been extended by Harncd [3] to allow for plasma- 
vacuum interfaces of arbitrary shape. This model was successfully applied to studies 
of kink instabilities in long ion layers and rotational instabilities in theta pinches. 

A multidimensional hybrid model in which electron inertial effects were retained 
on the Q&’ time scale but excluded on the op,l time scale was developed by Hewett 
and Nielson [4]. In this way, phenomena requiring finite electron cyclotron fre- 
quency could be studied without necessitating the use of a time step small enough 
to resolve electron plasma oscillations. The code was used to simulate lower hybrid 
drift instabilities in strongly inhomogeneous plasmas; good agreement with full par- 
ticle simulations was observed. 

Hewett [S] has developed a 2+-dimensional hybrid model with a nearly implicit 
electron-field algorithm, thereby allowing low density or vacuum regions to develop 
in simulations without an adverse effect on numerical stability. The exceptional 
stability properties of the algorithm were demonstrated by the simulation of various 
pinch implosions. 

A linearized hybrid model with fully three-dimensional first-order perturbations 
was developed by Friedman et al, [63 for the study of field-reversed ion rings and 
mirror plasmas. This code followed the temporal development of a linearized per- 
turbation of specified azimuthal mode number about an axisymmetric equilibrium. 
Beam ions were treated kinetically, with background ions and electrons represented 
by individual sets of fluid equations, The model has been used to verify previous 
analytic results regarding kink and precessional instabilities, and has confirmed the 
existence of a “tilting” instability in weak ring-plasma systems. 

In the present paper we describe a 2$-dimensional quasineutral hybrid model 
which is suitable for studying the dynamics of intense ion beams and rings in 
background plasma [7]. Among the new features of the model are: (1) an arbitrary 
number of ion beam species of arbitrary charge-to-mass ratio; (2) an implemen- 
tation of the algorithm of Byers et al. [2] in axisymmetric r-z geometry 
(a/a@ = 0); (3) slowing-down and pitch-angle scattering collisions in both ion and 
electron equations of motion; (4) finite pressure corrections in the electron equation 
of motion; (5) a transport equation for electron energy, including sources and sinks 
of heat in the regime v:/Qc. $1 (v$ is the electron-ion slowing-down collision fre- 
quency); (6) a neutral specie modeled by a stationary fluid, including ionization 
and recombination; and (7) energy loss due to impurity species in coronal 
equilibrium in an optically thin plasma. The code built from this model, CIDER 
(Cornell Ion Dynamics and Electron Response), has been successfully applied to 
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the problem of propagation of intense ion beams through preformed z-pine 
plasma channels [S], a scenario of current interest to the inertial con~neme~~ 
fusion community. 

The paper is organized as follows. The CIDER model is described in Section 2. 
Individual subsections are devoted to major pieces of the code, including ions, elec- 
trons, transport equations, radiation, field equations, atomic physics, and 
calculation of collision frequencies. The algorithm used to solve these equations is 
presented in Section 3. In Section 4 we discuss the detailed testing performed to 
verify the proper operation of various parts of the code. Finally, a summary an 
concluding remarks appear in Section 5. 

2. MODEL 

All ion species, respresenting either background or beam ions, are represented by 
finite-size particles of specified charge-to-mass ratio, and obey Newton’s equations 
of motion, 

where the subscript k denotes a particle index and Gaussian units are used. 
An arbitrary number of beam ion species can be considered, with a single 

background ion specie. The code differentiates between beam and backgroun 
titles for initial conditions, boundary conditions,‘and for the evaluation of collision 
terms. The slowing-down collision frequency between incident specie a and field 
specie P is denoted by vrp [9,10], and o, i, e, and b denote neutral, background 
ion, electron, and beam ion quantities, respectively. This representation of t 
slowing-down effect of collisions is justified in the two limits lvkj << u,~, and 
bki + Vth,, where vth denotes the electron thermal velocity. Its application in the 
regime (vk( - vrh, needs to be checked for individual cases. Thus, the three terms cn 
the right-hand side of Eqs. (1) represent, reshectively, the Lorentz force, the 
slowing-down due to collisions with background electrons, and the siowin~-dower 
due to collisions with stationary background neutrals. Slowing-down 
ion-ion collisions is not included here since vy/vF - Qbm,/uni). Ion collisions with a 
massless electron fluid and with a fixed background specie do not conserve momen- 
tum. Energy is not conserved in ion-background collisions; however, the electrons 
can be heated and energy is conserved in ion-electron collisions. Transverse 
fusion of beam ions due to scattering by electrons is not represented in Eqs. (1) 
is included in the computations by a Monte Carlo technique. A random energy- 
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conserving rotation is applied to the velocity vector at each time step, the angle of 
rotation being proportional to the transverse scattering frequency vL [lo]. Trans- 
verse diffusion of beam ions due to ion-ion collisions is not included. 

Note that the retention of the quantity Z,e/m, for each group of particles makes 
it possible to simulate systems in which several species of ions are present. 

2.2. Electrons. 

In the present code, we are not interested in phenomena occurring on the time 
scales of the electron plasma frequency, c+, or the electron gyrofrequency, a,,. 
Similarly, we are not interested in the spatial scales of the Debye length, &,, or the 
electron gyroradius, rL,. In this regime, electron momentum may be neglected by 
setting the left-hand side of the electron momentum equation to zero, 

C2) 

Here, v, represents the local mean velocity of ion specie a. The electron pressure is 
given by 

pe =nTe, (3) 

and we have used quasineutrality, 

2.3. Energy Transport 

The electron temperature is determined from [ll] 

;n~+pJ.,.= -V*q8+Q,. (5) 

In Eq. (5), d/dt = a/at + v, .V, q, is the electron heat flux, and Qe is the electron 
heating term. The specific forms for q, and Qe depend on the physics being included 
in the model. At present, we assume the electrons to be highly collisional (i.e., 
Qcer, < 1, where z, is the characteristic electron collision time). The electron heat 
flux then takes the form 

qe = anT,u - IcVT,, (6) 

where a is a numerical factor depending only on the charge state Z of the specie 
involved, u E v, - vi is the relative streaming velocity, vi is the mean background ion 
velocity, and the electron thermal conductivity is given by 
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Again, the numerical factor b is a function only of Z. For the electron beating term 
e, we take 

+Y-1 2 v,mb(vt) nb - R. w 

In Eq. (S), the terms represent temperature equilibration with the background ions, 
return current heating, Thomson effect (thermal gradient) heating, ~o~~~s~o~a~ 
energy deposition due to the beam, and radiational coohng, respectively. ecall 
that only a single background ion specie is considered, y is the ratio of specific 
heats, v, the collisional energy loss frequency, R the radiative cooling term to be 
discussed below, and q the resistivity, given by 

The superscript e as in v: denotes a total electron quantity, in this case the total 
collision frequency, including neutrals. 

As will be discussed below, the model we have chosen for the fields excludes dis- 
placement current, so that a fully self-consistent treatment of radiation is not 
here, Such a treatment is not necessary for the slow time scales to be consid 
and would introduce the noise and time scale problems commonly associated with 
electromagnetic codes. However, it is still possible t ccount for radiatjonal cool- 
ing of the electron fluid by introducing the term in Eq. (8). Several authors 
[12, 131 have calculated radiational cooling rates due to various impurities in a 
plasma assumed to be in coronal equilibrium (collisional excitation baPanc 
radiative decay), including such effects as Bremsstrahlung, re~omb~~ation~ a 
radiation. These data are usually presented as polynomial fits, making them ideal 
for the present application. Thus, we write 

R E nonL,, 

log L, E i: A,(log T#, 
(101 

i=O 

where n, is the neutral or impurity density of the element in question, and t 
are coefficients taken from the references just mentioned. At present, coefftcients for 
hydrogen, carbon, lithium, oxygen, nitrogen, argon, and gold have been included; 
the plasma is assumed to be optically thin. Note that the ass~rn~tio~ of an 
ionization equilibrium such as the corona model [14, 151 can break down on short 
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time scales, but the general results and trends obtained herein should stili be of 
interest. 

2.5. Field Equations 

Since we are interested only in low frequency phenomena such that 
47115) B Jc?E/&J, it is appropriate to neglect displacement current by solving 
Maxwell’s equations in the quasineutral Darwin approximation [7, 16-181. In this 
approximation, Ampere’s law reduces to 

where 

is the charge-averaged velocity of all (background and beam) ions. The code 
monitors 6nJn = VW E/4me as a check on the validity of the quasineutral 
approximation; this quantity is never observed to be larger than about 10U7. 

Solving Eq. (11) for v,, substituting into Eq. (2) and rearranging, we find 

E= -; (vi)- 

(Vi)-&VXB-v, (vi)-~VxB . (12) 

This expression is used to obtain the electric field; the magnetic field is obtained 
from Faraday’s law, 

aB 
at= 

-cVxE. (13) 

Finally, note that Eq. (11) can also be used to eliminate the electron drift velocity 
from the collisional term in the ion equation of motion (Eqs. (l)), giving 

~=~(E+f”kX+‘+k-(Vi)+~~Xf)-v~Vk. (14) 

We have therefore eliminated v, from all our equations, leaving everything in 
terms of field and particle quantities, and the electron temperature. This is the 
motivation for naming CIDER an ion dynamics and electron response code: the 
electrons simply respond to the ion dynamics in such a way as to maintain 
quasineutrality, and contribute to the current supporting the magnetic field. 
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2.6. Neutrals and Atomic Physics 

Neutral gas background is modeled as a stationary 
therefore makes its presence known only via colhsio 
and radiational cooling of the electron fluid. No attempt is made to follow the 
motion of the neutral fluid, and presumably the code is ap 
situations where the time scales are such that this can be just 

An optional coronal equilibrium model is also ava 
ionization of the background gas. In this model [14, 
ionization are balanced by radiative decay, with three-body reco 
available if desired. It is assumed here that collisionally-induced 
ulations of the atomic energy levels occur on time scales long 
typical atomic relaxation time r, “N lQ1’/n, set; see E 
Under these conditions, the equilibrium ion density, for single io~~zat~o~~ is given 
bY 

ni s 
-=-------) (45) 
no a, + na3 

where 

is the ionization coefficient, 

cx,.- 5.2 x IQ-‘“Z(E0,/TJLi2 

is the radiative recombination coefficient, and 

M 3 se 8.75 x 10-27T-4.5 e Cd6cl 

is the three-body recombination coefficient for single ionization Here FW is the 
ionization energy of the specie in question, and temperatures and energies are 
expressed in electron volts. If the above condition on ?r is not met, the coupled rate 
equations of the time-dependent corona model [15] must be solved to obt 
neutral density. This time-dependent model would appear to be more agpr 
at some densities, but the numerical solution of the rate equations is a very 
process in its own right. The equilibrium model is a first attempt at in&~ 
proper physics. 

The implementation of a model such as Eqs. (15) and f 16) in a code where ions 
are represented by particles is nontrivial, and will be discussed below. For .now, it is 
sufficient to say that the neutral density profiles may be either constant in time, or 
updated at each time step to account for ionization according to Eq. (15). 
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2.7. Collision Frequencies 

Slowing-down, transverse diffusion, and energy loss collision frequencies for 
encounters between charged particles are calculated from the standard Spitzer 
expressions [IS, lo]. In highly collisional parameter regimes, it is sometimes 
necessary to scale these frequencies by a factor fy 2 0.1. This is necessary because 
numerical stability and accuracy suffer when the quantity vAt becomes much 
greater than unity. In other words, the particle collision time must be greater than 
the time step used in the code if collisional effects are to be resolved temporally. 
Results are then scaled to the fully collisional case f, = 1 as discussed in [S]. 

Charged particle-neutral collision frequencies are calculated differently, 
depending on the specie in question. For the background plasma, the thermal 
velocity is assumed greater than the drift velocity, so we take 

vy = n,c~,,J T,/m,)1’2, (17) 

where the cross section G,, is typically about 5 x lo-l5 cm2 [19]. The opposite limit 
applies to the beam: the drift velocity is assumed greater than the thermal velocity. 
For protons in various gases, Janni [20] has tabulated values of the energy loss 
dE/dx as a function of energy. We interpolate linearly between these values, and 
then compute the collision frequency as follows. Using the chain rule, 

dE dE dx dE 
-=--=vb--; dt dx dt dx 

but E denotes the beam particle energy, whence 

dE 1 d dub -=- 
dt 2 m-v =mvbz. dt z 

(18) 

(19) 

Combining Eqs. (18) and (19) and introducing the definition of the slowing-down 
frequency, dv,/dt = -v,vb, gives 

- dE/dx 
v =-. s (20) 

mvb 

In a similar fashion, Ziegler and Chu [21] give polynomial fits for energy loss of 
He++ ions in various gases; we again use Eq. (20) to compute collision frequencies 
from these values. At present, CIDER has provisions for either hydrogen or argon 
as the background gas. 

3. ALGORITHM 

3.1. Global Timestep 

The global CIDER time advance is a generalized r-z implementation of the 
predictor-corrector algorithm of Byers et al. [2]. Knowing the quantities E”- ‘, 
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n-1/2 ) xi, v;- 112, and Ty Ii=, where superscripts denote time levels, the time 
advance may be performed as follows: 

(I) Compute En- ‘/’ from Eq. (12). Note that t 
one time level. From En-II2 = 1/2(E”-’ i- E”), predict 

(13) to predict 

e particles using Eqs. (14) and (I) to Q v;+ 11* an3 x;+ I7 
and compute currents and densities Volume weighting is us 0 attribute particle 
moments. It is sometimes possible to achieve comparable ac y and shorter run- 

ing the particles only once per time step in the converg 
(4) Advance the electron temperature using Eq. (5) an 

equations, giving c + l/l. 
(5) Compute En+lj2 from Eq. (12). 

(6) beam a corrected value of E”, using E;,,, = 1/2(E”- ‘I2 + 
(7) Perform the convergence check, 

maxi j / Er,? 1 - Eyj\ I 1 
maXi,j lEfjl 

’ GE, 

for all three components of E:,,,. Here, q represents an iteration number, an 
esent cell indices in the z and Y directions, respectively. We typically set 
--6 with 3 - 15 iterations being required for convergence. If convergen 

not achieved, we return to step (2) and begin the next iteration, with 

Note that it is necessary to enforce a density minimum so as not to violate a 
Gout-ant condition on the AlfvCn speed on the grid. We therefore require that 

B2(At)2 
n’4zmimin(Ar2, Az2)’ 

(22) 

for a14 grid points. Here lyli is the mass of the background ion specie. Also, cohision 
frequencies are evaluated explicitly prior to the beginning of a new time step. 
it would be more accurate to compute new collision frequencies durin 
iteration, it is found that this seriously degrades the convergence of t 
probably because yet another variable is free to float. eptable results are 
obtained with the explicit evaluation of collision frequencies. is also necessary to 
keep the electron temperature above a critical value T, in the calculatio 
problems encountered in evaluating terms going as T- 3’2 This value is typically set 
to 0.1 eV. Furthermore, it is sometimes necessary to apply digital filtering to com- 
puted field quantities to lessen the effects of short wavelength noise. Finally, if beam 
particles are to be injected, quasineutrality is automatically enforced since the elec- 
tron density is obtained from Eq. (4) which accounts for new particles by construc- 
tion. 
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In addition, the iterative procedure used here to solve the electric field equation, 
Eq. (12) is subject to convergence conditions which are discussed in the Appendix, 

3.2, Particle Pushing Algorithm 

Particle velocities and positions are advanced in a leapfrog fashion using an 
algorithm originated by Nielson and Lindman [23], modified to operate in r-2 
geometry and to include collisions. This algorithm is second-order accurate but not 
fully time-reversible; its empirical stability and accuracy properties are excellent, 
however. The algorithm is as follows: 

V n + l/2 = gl [fv” - 112 +g,v,+h[E”+g,(SxB”+g,B”)/c]], (23) 

X n+l=Xn+v”+1/2At, (24) 

where hrqAt/m, g,zvAt, gl=l/(l+gO), g,rl/(l+g,/2), g,=h(v”-“‘.B”)/2, 
f = 1 - h2g2(B”)‘/2, i; = v:- 1/2 + hE”/2, and v;- ‘1’ - v”-~” + g,,vj/2. In Eq. (23), vi 
denotes the fluid velocity of the colliding specie. 

To avoid singularities near the system axis, each particle is actually pushed in a 
local Cartesian system in the Y - 0 plane whose origin is located at the particle’s 
position at time n, and whose x-axis lies along the particle’s radius vector in the 
cylindrical system (see Fig. 1). Radial quantities then correspond to x direction, 
azimuthal quantities to the y direction, and the z direction remains unchanged. 
After the push is performed, a transformation (x, y, z) -+ (r, 8, z) is applied. Since 
velocities are defined at half time steps, the identification of their radial component 
with v, and azimuthal component with v, yields a phase error N o At/2 which 
causes the force terms in Eq. (23) to lose exact time centering. However, no 
anomalies have been observed in the tests and applications of the code made thus 
far. 

As mentioned in Section 2.1, CIDER 

L 

has an option whereby beam ions may 

Y 

x 
Y 

r,,’ 
,,,,,~ “Particle 

FIG. 1. Coordinate system used in the CIDER particle push. 
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undergo small-angle, energy conserving scattering events. If this option is selected, 
each particle’s poloidal velocity is rotated through some angle cc in the r - z plane 
after the final push for a given time step (i.e., after the iteration has converged). 
determine o[ as follows. First, the transverse diffusion collision frequency 
calculated using the fast asymptotic form of the standard Spitzer expression [19], 

v$ = 1.8 x 10-l fv(m/m,)-‘/2 FzZ~~Q-~!~. 425) 

Here, fV is the scaling factor discussed in Section 2.7, mp is the 
Coulomb logarithm, and E the beam ion energy in electron volts. 
rj: is then given by 

lclj = vy At. 626) 

Finally, a random sign is assigned to this result, and the particle’s velocities are 
rotated by applying the standard rotation matrix. A similar proce 
used in Monte Carlo simulations of electron heat flow [24]. 

3.3. Electron Temperature Solution 

The electron temperature Eq. (5), is solved implicitly in the terms which are 
linear in Y’,. All other terms (return current heating, collisional beating, the ion part 
of the equilibration term, and radiational cooling) are treated as somce 
Transport coefficients are also evaluated explicitly. Tbe 
equations (one equation for each interior grid point) is solve 
direction implicit (ADI) technique. 

Even though this approach is as implicit as practicable, negative temperatures are 
occasionally generated. These nonphysical results are usually due to some com- 
bination of stiffness and steep gradients in the equations. The most successful fix for 
this prob been simply to clip any negative temperatures, so that F; + LQ is 
replaced c+ lj2, 0) [25]. This approach is reasonable, since negative tem- 
eratures are generated by “overshoot”: the temperature equation is trying ts cool 
ff a hot spot too quickly for the numerics, and extrap es below zero. Clip 

merely prevents the extrapolation from going too far. ults obtained using 
approach appear to be quite acceptable, especially since negative temperatures arise 
~~freque~t~y, and then only in a few isolated cells. 

3.4. Corona Model 

tional coronal equilibrium model, Eqs. (15) and (161, is to be satisfie 
each time step, it is necessary to adjust the background neutral and ion 
accordingly. The neutral density adjustment is easily accomplished bet 
neutrals are taken to be a fluid quantity. But for the ions, an efficient way of 
deciding which particles are to be affected by density adjustments must be 

CIDER treats this problem as follows. First, a density increment An, is ~o~~ute~ 
for each cell. This increment represents the change in ion density required to satisfy 
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Eqs. (15) and (16). The corresponding change in neutral density is then -An@. The 
particle table is then searched for the one particle closest to the center of the cell. If 
dn, > 0, that particle’s weight is increased accordingly. The corresponding neutral 
density is decremented by An,, and we continue on to the next cell. If Anq< 0, 
however, it is possible that the particle closest to the center of the cell does not 
represent a sufficient number of ions. In this case, we remove a specified fraction of 
the particle’s weight (usually 90%, to avoid generating “null particles” carrying no 
ions), adjust dn,, and search for the next nearest particle. The process is then 
repeated until either APQ=O or we run out of particles in the cell. Finally, the 
original -An, is added to the local neutral density. 

There are some difficulties associated with the actual implementation of this 
technique. Since particles are one cell in size, unless a particle is sitting exactly at 
the center of a cell it will spill over into adjacent cells. This spillover means that an 
exact equilibrium will not be generated since the density change due to one particle 
becomes nonlocal. A similar problem results when An, < 0 and we run out of par- 
ticles in that cell, It is found, however, that the equilibria that are actually generated 
by this algorithm are satisfactory in that smooth profiles accurate to within an 
order of magnitude of the exact solution are usually obtained. As an example, a test 
case was run in which 6.77 x 1016 protons of energy 5 MeV were injected into a 

dcml zlcm) 

z(cm) Z(Cd 

FIG. 2. Corona model test output: (a) beam density contours, (b) beam particle positions; every 
sixth particle is plotted, (c) T, versus z at Y = 0.125 cm, (d) no versus z at r = 0.125 cm. 
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hydrogen plasma channel of density ni= 2 x 1 lx cm-3 on axis, electron te 
perature 9, = 6 eV on axis, and neutral density no = 2 x 6Or6 crne3 on axis. The 
channel carried 36.5 kA of axial current initially. In Figs. 
diagnostics showing the state of the system at t = 10 nsec. The 
reached z z 28 cm, as shown in Figs. 2a, b. The axial profile of electron tern~e~~t~~~ 
at Y = 0.125 cm, Fig. 2c, indicates that T, N - 8-9 eV in the vicinity of the beam, so we 
would expect a reduction in neutral density in this region according to Eqs. (15) 
and (16). Indeed, the axial profile of neutral density at r = 0.125 cm i 
that ~1~ has been reduced to about 1Qr4 crnd3 where the beam 
plasma. This result compares favorably with the value q, zz 3.5 x IQ’ 
puted from Eqs. (15) and (16). The neutral densit 
original value in regions which have not yet been 
conclude that the corona model demonstrates the correct s~rni~~a~t~tat~~~ 
behavior. 

oundary Conditions 

A variety of field and particle boundary conditions are available in CT 
setting appropriate guard cell values. 

Field boundary conditions at the system axis, r = 0, are obta 
by ~Q~sider~~~ the parity of the fields 7e radians around the cyli 
E, is continuous across r = 0, but E, changes sign. 

rical wall at radius Y = rW is taken to be perfectly con 
Ee and E, must vanish at this wall. To obtain the proper boundary condition cpn E, 
atr=r,, we write Gauss’ law in axisymmetric geometry, 

Evaluating this at r = Y, and noting that EZ(r = r,) = ~(r = I”,) = 0, we fin 

Hence rE, is constant across the wall, giving us the desir boundary co~d~~~o~~. 
Analogous results obtain for the magnetic field if we lace Gauss’ law by 
Ampere’s law. Finally, field boundary conditions may be either periodic or perfectly 

boundary conditions are reflecting at both r = 0 and Y = Y,. 
r absorbing particle boundary conditions may be selected at 

z=z,,,. 

3.6. ~mp~@me~tution and Timing 

ER was written specifcally for the CRAY-I and C 
the CTSS operating system. Extensive series of runs on a 22 x 22 grid with E = 10m6 
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in Eq. (21) have shown CPU times of 30-150 psec/particle/time step, depending on 
collisionalities, pulse lengths, etc. We have typically used lO,OOO-15,000 particles 
and run the code for 500-1000 time steps (dt = 10-11-10-9 set), so that a represen- 
tative run takes about 30 min of machine time. Many of the runs perform 
diagnostics every 10 or 20 time steps, and it is found that a significant amount of 
time is spent doing graphics. A longer interval between diagnostics would speed up 
the code considerably. Turning on the corona model or expanding the grid and/or 
particle tables so that all the data could no longer be contained in core 
(necessitating frequent disk I/O) would slow the code down to some extent, but we 
find CIDER to be an extremely efficient code considering the complexity of the 
physics model upon which it is built. 

4. CODE VERIFICATION AND TESTING 

A series of verification runs consisting of known test cases was performed to test 
the numerical stability and accuracy of the code. Following Friedman [6], we have 
performed two extensive sets of verification runs: normal mode tests and plasma 
return current simulations. 

4.1. Normal Mode Tests 

These tests consist of exciting linearized normal modes of known dispersion 
relation and comparing the resulting oscillation frequencies with analytic results. 
No beam is injected in these runs, but since CIDER treats a beam particle in the 
same way as any other ion, we can expect this type of test to verify much of the 
algorithm and coding. 

The normal modes of a cold cylindrical plasma in a uniform external field 
(0, 0, B,) have been considered by Bernstein and Trehan [26] and by Stix [27]. 
Friedman [6] has modified these results to include a perfectly conducting outer 
wall. Letting the perturbed fields vary as exp[i(k,,z- cot)], the two-fluid equations 
in the limit w/O,, + 1 yield the dispersion relation 

(29) 

where vA = B,/(47~n,n)‘/~ is the Alfvtn velocity and QCi=eB,/m,c is the ion 
cyclotron frequency. The z-component of this equation yields a Bessel equation for 
BZ, whose solution is 

B, = 8J,(vr), (30) 

where B is a constant and v is given by 

2 k2c02 
k;-5-k , 

A Cl 

(31) 
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with 

3 -= 
A i 1 

q-g l-k$. 
VA ci 

This expression is substituted back into Eq. (31) and the resulting biqua 
solved to give the wave frequency, 

co = v,J[~[v’(l + y”) +ki(y2 + 2)] 

k+([v*(l +y”)+k;;(~~+2)]~-4k;[v~+k;]:~‘~]], /33) 

where y _ k,, v,/n,. 
The conducting wall boundary condition B,(r,) = 0 must still be satisfied. 

stituting Eq. (30) into the radial component of Eq. (29) this becomes 

; Jcdvr) = -J,(vr,) = 0, 

r = rw 

indicating that there is a discrete spectrum of ra ial modes. These modes are 
specified by v, = im,lr,, where 5, is the mth zero of J, j 

To obtain exphcit representations for the wave quantities, we first corn 
Faraday’s law and Ampere law to give 

471io 
VX(VXE)=~J. 

Using the fluid equations for J, the radial component of Eq. (35) gives 

(35) 

where o, = (4nnZfe2/m,)‘/2 is the ion plasma frequency. Using this result to 
eliminate E, from the azimuthal component of Eq. (35) gives a essej equatiQ~ for 
E,, so that 

where E is a constant. Expressing all complex exponentials as tr~go~o~~tr~~ 
functions, we obtain 

E,=\E,j cos(k,,z-ot)J,(v,r), 

E, = - jE,( sin(k,,z- oi) J1(v,p), 
(38) 

where it?,/ and (E,( are related by Eq. (36). The choices of sines and cosines in 
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Eq. (38) ensure that E, and E, are out of phase by 90”, as required by Eq. (36). The 
wave magnetic field can then be obtained from Faraday’s law, 

ckli Br=; lEel sin(k,,z-ot)J,(v,r), 

B, -2 jEsl cos(k,,z - cot) JO(v,r). 

Finally, the perturbed current densities are obtained by using Eqs. (38) and (39) in 
the ion momentum equation, yielding 

cos (k,,z-wt) J1(vmr), 

(40) 
sin(k,,z-wt) J,(v,r). 

In the above linearized analysis, we have neglected higher order terms such as 
B(l). VB(‘), where the superscript denotes a perturbed quantity. This approximation 
is valid if 1BC1)I/B,4 1. From Eqs. (39) and (36) we find 

IB”‘I/B o~Ja[%(l+!Ex)+Qq1’2 

a quantity which is never larger than about lo-’ in the simulations to be described 
below. Hence the linearized dispersion relation is applicable in the present case. We 
note, however, that even in the nonlinear regime, Alfven waves are still found to 
propagate at the Alfven velocity vA [30]. 

To initialize a given mode, we specify the sign in Eq. (33) (+ for a fast wave, - 
for a slow wave), the radial mode number m (also called n,), the axial mode num- 
ber yl,, (from which k,, = 27cn,,/z,,,), an d one of the held amplitudes, jE,(. We may 
also interpret n,, and n,/2 as the number of axial and radial wavelengths in the 
mode, respectively. Field quantities are then perturbed using Eqs. (36), (38), and 
(39) with t = 0. Perturbed ion velocities are obtained from Eq. (40) and J = nqv, 
since the background ions are taken to be cold. Finally, perturbed electron currents 
are determined from Ampere’s law. 

In all our normal mode runs, we take At = 1 nsec, ymaX = z,,, = 4 cm, 
B, = 12.5 kG, n = 4.62 x 10” cmp3, and [Eel =6x lop5 V/cm. We then have 
Q,, At = 0.02. Eight thousand particles are used on a 22 x 22 grid (including guard 
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FIG. 3. Normal mode test output at Y = z = 1.7 cm. The extrema do not appear rounded due 10 a 
large diagnostic interval. (a) En versus time, (b) radial ion curren? density versus time, (c) axial electron 
current density versus time. 

FIG. 4. Spatial mode structure of E, for a normal mode test run. 
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FIG. 5. Typical CIDER dispersion curve, n i = I. The solid line represents the exact theoretical 
result, the points are code results, and the dashed line is a fit to the code results. 

To verify the improved accuracy of the code when the time step is decrease 
run was made in which n, = 1, n,, = 2, and the time step halved to 0.5 nsec. 
observed wave period was 188.8 time steps, or 94.4 equivalent 1 nsec time steps. 
This represents a 28 % reduction in relative error between observed and analytic 
wave frequencies as compared with the larger 

The collisional terms in the particle and fiel be tested by observ- 
ing the damping of a normal mode in the 
damping rate may then be compared with the theoretical value, y z ~c*w*/~~v~, 
where y is the plasma resistivity (obtained under the assumption o/QCi < I ), In 
Figs. 6 we present the results of a run in which all parameters were i 
those in the run of Figs. 3 except that we set 2~v~‘/O,~ = 0.5. The observed wave 
period is unchanged, and the wave is seen to damp with damping rate 
YObserved z 3 x IO6 set-‘. This may be compared with the theoretical value of 
7.5 x IO5 set-I. While this difference is not insignificant, it can again be attr~b~~e~~ 
to finite At and Ax effects, and to the fact that w/a, = 0.40 is not much less than 
unity. In any case, the proper operation of the collisional terms in the code is 
verified. 

4.2. Plasma Return Currents across a Magnetic Field 

Plasma response to a growing external azimuthal beam current 
perpendicular to an external magnetic fie rovides another test of 
most of the CIDER model and algorithm. so of importance in km 
ring and mirror configurations where energetic particles are to be used to drive the 
system past field reversal. 

nown [29-311 that plasma return currents parallel to an exte 
cancel any driving beam currents for times less than a magnetic 
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FIG. 6. Damped normal mode test output at r = z = 1.7 cm. The extrema do not appear rounded due 
to a large diagnostic interval. (a) E. versus time, (b) electric field energy versus time, (c) radial ion 
current density versus time, (d) axial electron current density versus time. 

fusion time, r,, = 4ma2/c2, where D is the plasma conductivity and a the charac- 
teristic length. However, in the case where the beam current flows across the 
magnetic field (as is the case for a field-reversing ion ring, e.g.), it has been shown 
[30, 32, 333 that the plasma response is to cancel the beam current only for times 
short compared with an Alfven transit time across the system, rA z t-,/u*. This can- 
cellation is due to an azimuthal E x B drift of the electrons; the required radial elec- 
tric field develops as the ion beam attracts electrons to provide charge 
neutralization on injection. For times longer than rA, however, the return current 
does not continue to grow, even though the beam current does. Instead, the return 
current simply oscillates with an amplitude much less than that of the beam current. 
This result has been explained [Z] in terms of destructive interference of AlfvCn 
waves reflecting from the radial wall; the same authors have performed one-dimen- 
sional simulations of this effect. Friedman [6] has observed the same result using 
his multidimensional linearized simulation model. 

As was the case with Friedman’s simulations [6], the CIDER simulations we are 
about to describe differ from some of the previous work in several respects. Cylin- 
drical geometry is used. The driving current is represented by an additional term 
added to the azimuthal velocity average array, so that we ignore the extra electrons 
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needed to ensure quasineutrality if a beam specie were actually present. The driving 
current grows linearly in time, but is given a finite radial width to reduce short 
wavelength-generated noise. In contrast to Friedman’s work, however, our 
simulations are fully nonlinear. 

In Figs. 7 we present the results of such a simulation. Parameters were the same 
as those used in the normal mode runs, so that vA= 1.27 x lo6 cm/set, or 
0.006 cells/time step. The driving current was initialized at time step 40, and extends 
from r = 1.9 cm to r = 2.9 cm. We take a/& =O. Of particular interest are 
Figs. 7a-d, which show radial profiles of (B, - B,) and Jo,,,,, at z = 1.7 cm for both 
early (t < zA) and late (t % zA) times. At early times, the cancellation effect of the 
plasma current is evident. However, the field profile at late times is that of the driv- 
ing current alone, indicating that the plasma return current no longer causes can- 
cellation. Similarly, the radial profile of the total azimuthal current at late times is 
that of the drive current. (Note that the vertical scales are different at early and late 
times because the drive current continues to grow linearly.) The time history plots 
in Figs. 7e-h verify that plasma quantities are oscillatory, while (B, - B,) grows in 
“staircase” fashion as Alfven waves continually reflect from the outer wall. 

5. CONCLUSIONS 

We have presented a 2$-dimensional (r, z, v,, vg, v, ; a/a0 = 0) quasineutral hybrid 
simulation model in which ions are represented by particles and electrons by an 
inertialess thermal fluid. The model includes a number of effects not heretofore con- 
sidered, including finite pressure corrections, transport of electron energy, collisions, 
atomic physics, and radiative energy loss. The model equations are solved by a 
generalization of the predictor-corrector algorithm originally proposed by Byers 
et al. [2]. The code has been extensively tested and then applied [S] to the 
problem of propagation of an energetic ion beam through a preformed z-pinch 
plasma channel. 

A number of other features are currently being implemented in CIDER. Most 
importantly, we have developed a Cartesian version of the code, including more 
sophisticated electron, collision and ionization models. This version is suitable for 
studying an entirely new class of problems, such as ion dynamics in the ionosphere. 
Such simulations will be described in forthcoming publications [34]. 

APPENDIX: CONVERGENCE ANALYSIS 

The computation of the electric field from Eq. (12) requires an iteration as dis- 
cussed in Section 3.1. To examine the convergence of this iteration, we consider first 
the simplest case which excludes collisions and ion motion. These effects impose 
additional constraints which will be considered separately. 
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Under this assumption, the iteration process, based on Eqs. (12) and on 
Ampixe’s law, reduces to 

E(q) = - (A21 

where the superscripts (q) denote the iteration level and “old” refers to the known 
value at the previous time step. Combining Eqs. (Al) an 

Y-l and 6B4+‘-BY+’ - Bq denote two successive corrections. 
From Eq. (A3), 

and expanding the last term in the right member yields 

(4 + 1) = Bold _ B(Y) + cdt V x 

he 

+~Vx~[B’“-“xiVx68’“‘)+8 (y) x ( 

This expansion is justified since 6B’q’ approaches zero when the iteration converges, 
and the density, ~1, does not change since ion motion is not included in this analysis. 
Note that the first line in Eq. (A4) vanishes ictentically, and denoting the second, 
line as the linear operator LZ’~(~B’~‘) yields 

6Bcq+ I) = 2?I(6B(q)). 

Since convergence requires (6Bcy+ ‘)j < (6B’y’I, we must have /.JZI”;l < 1. Assuring 
V N Ax;,,f,, this condition reduces to 

or 

where L?,, = eB/mic is the ion cyclotron frequency and Axmi, denotes the minimum 
grid spacing. 

581/70/l-8 
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The effects of collisions and ion motion are now considered. If vmar denotes the 
dominant collision frequency, the corresponding term in Eq. (12) gives 

(A71 

Substituting Ecq) from this equation into Eq. (Al) gives 

B(Y+ 1) = B“ld + $4(Bk?)), (A8) 

where 

L$(B’~‘) = - 
c2Atvmax 

4ne2 VX;(VxB’q’). 

It follows from (AS) that 6B (y+ ‘) = Zz(dB(q)), and convergence requires ldpzl < 1 or 

Finally, ion motion introduces the operator 

~~(B’4’)= -~VX((Vi)XB”‘), 

and the condition I&/ < 1 yields 

Note that condition (AlO) is a Courant condition on the mean ion velocity, but 

X 

5 x @cm 

3 x 106 

2.5 x 106 

Ion Cloud 

Background - 

Plasma 

-_------- (Density n,) - 

0 

I Iv=- 

8 x lO’cm/sec 

EL, = 10.“Gauss 

I I 

FIG. Al. Initial configuration of the ion cloud and background plasma for convergence tests. The 
grid has 32 cells in each direction. 
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TABLE II 

Convergence Tests with B= 10e4 G, At = 2 x 10e3 set, Ax,,,, = 1.67 x IO5 cm, 

Given the Convergence Condition n > 36 crne3 a 

Run np (Cm-y N,’ Results 

10 
100 

1000 

2.5 x lOi 
2.5 x lOi 

2.5 x 10’6 

No convergence at time step 3. 
Converged in 8-10 iterations at time step 40 
Converged in 18-20 iterations at time step 60 
Converged in 2&22 iterations at time step 80 
Experience with the code has shown that this type 

of situation soon leads to nonconvergence. 
Converged in 6-8 iterations at time step 100; 

this is considered normal. 

Note. .Nb,h, = const. for the three runs 
ii See inequality (A5). 
’ nP z background plasma density 
‘ N, 3 number of ions in ion cloud. 

conditions (A6) and (A9) are Neumann conditions relating At to 4x2, typical of 
fusion computations, and which must be satisfied in addition to the Alfven-Cour 
condition (22). These Neumann conditions are the result of the explicit procedure 
used here in the field computation. We are currently evaluating techniques for 
removing these constraints. 

A set of simulations was done to verify the convergence condition (A6). These 
simulations were done with the Cartesian version of the code, operating in the x - z 
plane as shown in Fig. Al, with a/@ = 0. Ions, representing N, protons, are 
initialized with zero velocity in the central region shown, and a background 
of density lzP is blown on these ions from the right boundary. A uniform magnetic 
field B, is initially applied throughout the system. These computations are similar 

FIG. A2. Magnetic field buildup with n = 10 cme3, E = 10m2. The iteration fails at time step 11. 
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to simulation of the interaction of the solar wind with artificial lithium or barium 
releases in the magnetosphere [34]. With By = 10M4 G, (32 x 32) cells giving 
dX,i, = 5 x 106/30 = 1.67 x lo5 cm, and At = 2 x 10e3 see, condition 
n>36cmm3. 

(A5) gives 

Three computations were done as shown in Table II, with E = toe6 in the con- 
vergence test (21). Note that the iteration converged slowly for n = 100 cme3 and 
failed to converge for n = 10 cm -‘. These results are in agreement with the above 
convergence analysis. 

To examine the pathological B-fields generated when convergence fails, Run 1 
was repeated with E = lo-*. This allows significant fluctuations of B to build up 
before the iteration fails. The components B, and B, parallel to the simulation 
plane remain zero but the perpendicular component B, grows gradually from time 
step 1 to time step 9, and fluctuations build up in the vicinity of the ion cloud. 
There is a sharp increase in B, at step 10, see Fig. A2, and at step 11, each iteration 
gives larger values of B, until the computation fails due to wild ion motions. A map 
of B, at the third iteration of time step 11 is shown in Fig. A3. Note that divergence 

_-__--_----------------------------------l----- 

35: 
32: 
31: 
30: 
29: 
20: 
27: 
26: 
25: 
24: 
23: 
22: 
21: 
20: -2 3-l 
19: =3=3+t3-3 1 -2 5-3 

1;; 
3+1+4=&=4 4-4+1-g 6 5-2 

4=1+3+1=7+4-6+2-l-5-7 1 3 
16: +2=1=1+1 6=4+*+2=5+2-5-3-l 
15: =3+3=1+4=3+3=2=4+2+1 5 
14: 3-6=5 3+7+2=6+1+3=2-Z 
13: -4+7=7 -7 9-l-l 
12: 
11: -1 
10: 

3: 
8: 
7: 
6: 
5: 
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3: 
2: 
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FIG. A3. Map of By versus x and z at the third iteration of divergent time step 11. Full scale is 

I%nax = 6.15 G, and the printed values give percentages of full scale as follows: 

4-5: 45 to 55%, =5: -45 to -55% 

5: 4.5 to 5.5 %, -5: -4.5 to -5.5% 

+ *: + full scale, =*: -full scale. 

Blanks are less than 0.5% of full scale. 
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occurs near the ion cloud, and that it is associated with short wavelength 
tuations, justifying the assumption V N dx;: made in deriving the ~~~v~~g~~ce 
condition (.Ki). 

The authors would like to thank A, Friedman, D. W. Hewett, B. 1. Cohen, and A. T. Drobot for many 
useful discussions. This work was supported by the U.S. Departmeat of Energy. 
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